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Abstract. A vortex line passes through as many pinning centers as possible on its way from one extremety
of the superconductor to the other at the expense of increasing its self-energy. In the framework of the
Ginzburg-Landau theory we study the relative growth in length, with respect to the straight line, of a
vortex near a zigzag of defects. The defects are insulating pinning spheres that form a three-dimensional
cubic array embedded in the superconductor. We determine the depinning transition beyond which the
vortex line no longer follows the critical zigzag path of defects.

PACS. 74.80.-g Spatially inhomogeneous structures – 74.25.-q General properties; correlations between
physical properties in normal and superconducting states – 74.20.De Phenomenological theories (two-fluid,
Ginzburg-Landau, etc.)

1 Introduction

The magnetic field penetrates the superconductor in the
form of filaments that pierce the sample from one ex-
tremety to the other. The filament is a vortex line carrying
a quantized unit of magnetic flux, Φ0 = hc/2e, where in its
core the magnetic field reaches its maximum value inside
the superconductor. The vortex line is not rigid and many
factors can contribute to its length such as thermal fluctu-
ations, the geometry of the sample, anisotropy, and most
important of all, imperfections inside the superconductor,
specially pinning centers. At the center of a flat sample, for
instance, with the applied magnetic field perpendicular to
the main surface, the length of the vortex line is the height
of the sample. However the vortex line will tend to adjust
its length to the distribution of pinning centers so to pass
through as many of them as possible resulting in a vortex
line bigger than the height of the sample. The nucleation
of a vortex line on a pinning center is advantageous [1]
for the superconductor because both the core of the vor-
tex line and the pinning center are non-superconducting
regions. Nevertheless long detours optimize the number of
pinning centers visited by the vortex to a maximum, but
this makes the vortex line too long and this increases its
self-energy, which grows with its length.

The study of pinning centers is fundamental to the un-
derstanding of superconductors [2]. The interaction of pin-
ning centers with vortices has been studied using several
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approaches [2,3]. Superconducting samples are plagued
with natural pinning centers and a way to attack the prob-
lem is to consider samples with artificially made pinning
centers [4], such as columnar defects [5,6], antidots [7,8]
and micro holes [9]. They are interesting because they
bring clear-cut questions about the interaction between
vortices and pinning centers, such as the one we are inter-
ested here concerning the local misalignment of a vortex
line. A vortex line is aligned to the magnetic induction
direction in the absence of pinning centers, but in pres-
ence of them bends and acquires a new shape, though it
remains globally oriented along the magnetic induction.

In the classical problem of the travelling salesman [10]
the seller must find the shortest route that connects sev-
eral cities at well known locations that he must visit. This
is a minimization problem that in case of a large number
of cities has many local minima, that is, many possible
routes very close in length to the shortest one. Similarly
to the travelling salesman, one may wonder what is the
maximum length that a vortex line can reach inside a
superconductor with pinning centers. To study the rel-
ative maximum length we consider the vortex line near
a zigzag of pinning centers, namely, a path with abrupt
alternate right and left turns such that at each turn there
is a pinning center. The pinning centers are just of one
kind, insulating spheres of radius R. Figures 1 and 2 give
a pictorial view of this superconductor with pinning cen-
ters. The vortex line acquires this zigzag shape as long as
trapping by the pinning centers is advantageous as com-
pared to the increase in length caused by the zigzag path.
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There is a critical path that sets a depinning transition
beyond which the vortex line does not follow the zigzag
path of the pinning centers. Here we numerically deter-
mine this transition without considering thermal fluctu-
ations. We treat the problem in the framework of the
Ginzburg-Landau theory [11]. From the point of view of
the Ginzburg-Landau theory, pinning may be caused by
spatial fluctuations of the critical temperature, Tc(x) [12],
or of the mean free-path that changes the coefficient in
front of the gradient term, ξ(x)2|(∇− 2πi

Φ0
A)∆|2. The in-

teraction between a vortex line and a pinning center has
been considered by many authors in the context of the
Ginzburg-Landau theory [13–16].

The paper is organized as follows. In Section 2 we de-
scribe the present model of a superconductor with pin-
ning centers, and in Section 3 our theoretical approach
is discussed. In Section 4 we give our results obtained
through numerical simulations. In Section 5 we summa-
rize the main achievements of this work.

2 Model

The model consists of a superconductor with a cubic array
of defects, described by its simplest unit cell, a cube of
size L containing two pinning spheres inside, separated
by D, as shown in Figure 1. The geometric center of these
two pinning spheres coincides with the center of the unit
cell. The general pinning center distribution is obtained by
rotating the center of the segment D by an angle θ with
respect to the axis along which is oriented the magnetic
induction, hereafter called z-axis, on a fixed plane defined
by both x- and z-axes. The magnetic flux that crosses
the face perpendicular to the z-axis of the unit cell is Φ0

and each vortex line is near a zigzag of pinning spheres,
made by the pile of unit cells along the z-axis, according
to Figure 2.

�
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Fig. 1. Position of the defects inside the unit cell. The super-
conducting material occupies the filled region.

�
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Fig. 2. Pictorial view of several unit cells forming the pinning
center lattice.

Though the present model treats a vortex lattice, the
depinning transition is that of a single isolated vortex line
near the zigzag of defects. The vortex-vortex interaction
has no effect on this transition since the vortex-defect in-
teraction is short ranged and very strong. In this paper
we obtain the depinning transition for the cubic lattice
of defects with L = 12.0ξ, D = 6.0ξ, and several pin-
ning sphere radii are considered, ranging from R = 1.2ξ
to the maximum possible radius, 3.0ξ, with an increment
of 0.20ξ.

To understand the length of the vortex line in this
model, first consider θ = 0◦, where the zigzag collapses
into a straight line made of two alternate segments, D
and L − D. Thus the maximum pinning sphere that fits
this unit cell has radius equal to (L−D)/2. For arbitrary
θ, the segment connecting the top (bottom) pinning
center to the nearest neighbor pinning center in the unit

cell above (below), is D′ =
√

(L − D)2 + 4LD sin2 (θ/2).
Notice that the pinning center density is θ independent,
and equal to 2/L3. The depinning transition is described
either by the critical angle θc, or by the relative pinning
length, ∆l/l

∣∣
c

= [l(θc) − l(0◦)]/l(0◦), l(θc) being the
critical length of the zig-zag path and l(0◦) the length of
the straight line formed by alternate D and D′ segments
along the z-axis. From geometry one obtains that,

∆l

l
(θ) =

√
(L − D)2 + 4DL sin2 (θ/2) − (L − D)

L
. (1)

It is more interesting to characterize the depinning tran-
sition through the relative pinning length ∆l/l because it
also describes, though approximately, the relative length
growth of the vortex line due to the presence of the zigzag
of pinning centers. The maximum zigzag path possible,
and consequently, the maximum length that the vortex
line can achieve, occurs for θ = 90◦. Thus for the present
set of parameters the maximum relative growth of the
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vortex line possible is (∆l/l)max = (
√

5−1)/2, that is the
line can be 61, 8% bigger than a straight line, as found
from equation (1).

3 Theoretical approach

The numerical search for the free energy minima is carried
for the unit cell with the two pinning spheres inside, tak-
ing care that the well-known Saint-James de Gennes [17]
boundary condition is satisfied at their surfaces because
they are insulating spheres. The radial component of the
supercurrent must vanish there. The unit cell has quasi-
periodic boundary conditions so to describe a cubic array
of pinning spheres embedded in the superconductor. This
system is studied here using a Ginzburg-Landau free en-
ergy expansion that considers superconducting and non-
superconducting regions on equal footing and enforces this
boundary condition during the minimization procedure.

Notice that the choice of the simplest unit cell helps
the minimization concerning the computational time, but
from the other side forbids the onset of vortex line con-
figurations other than the zigzag one. More complex vor-
tex configurations in that cubic lattice of pinning centers
require a larger unit cell to be studied. The present nu-
merical procedure uses a mesh of P 3 points to describe
the unit cell, and for the present simulations we take that
P = 19. Thus the distance between two consecutive mesh
points is a = 2ξ/3, and one obtains that L = 2ξ(P −1)/3.
The local field h = ∇ × A is constant inside the unit
cell and equal to the magnetic induction, B. The regime
treated here is of strong type-II superconductors with the
London penetration length much larger than the unit cell
(λ � L > ξ). The free energy depends on P 3 times the
number of variables, and in our case, just the variables
Re(∆) and Im(∆) participate in the minimization proce-
dure. Under this considerations, we numerically minimized
2P 3 variables through the Simulated Annealing method,
a Monte Carlo thermal procedure. We take 1600 visits per
site for each Monte Carlo temperature, with 150 tempera-
ture reductions, though this last number depends on how
fast convergence to the absolute minimum is achieved.

To obtain the vortex solution in presence of the two
pinning spheres, we minimize the Ginzburg-Landau free
energy inside the unit cell assuming that the magnetic
flux that crosses the cube along z perpendicular faces is
Φ0, and this corresponds to a magnetic induction B =
2πκ(ξ/L)2ẑ, in units

√
2Hc, where κ is the Ginzburg-

Landau constant and Hc is the superconductor critical
field. Under this condition a single vortex nucleates inside
the unit cell. In a coordinate system whose origin is at the
center of the unit cell, and the axis are along the cube’s
main directions, the positions of the pinning spheres, are
x1 = R(sin θx̂ + cos θẑ), and x2 = −x1, as specified in
Figure 1. In this approach the pinning centers are de-
scribed by step-like functions, zero inside and one outside,
which are made smooth for numerical reasons, τ(x) =
τ1(x)τ2(x), τi(x) = 1 − 2/{ 1 + exp [(|x − xi|/R)K ] },

with K = 8, i = 1, 2. The free energy density is,

F =
∫

dv

V

{
τ(x)

[
ξ2|

(
∇ − 2πi

Φ0
A

)
∆|2 − |∆|2

]

+
1
2
|∆|4

}
, (2)

expressed in units of the critical field energy density,
H2

c /4π, and the superconducting density |∆|2 normalized
between zero and one. This free energy density takes value
in the range 0 and –0.5, its minimum and maximum, re-
spectively. These extremes correspond to the normal and
the spatially constant superconducting density states, re-
spectively. The constant density state differs from the
normal state by a constant, equal to the condensation
energy H2

c /8π. The magnetic energy density also yields
a constant taken to vanish for each value of the mag-
netic induction. Because τ = 0 inside the spheres, equa-
tion (2) has the trivial solution ∆ = 0 with the condition
n̂·(∇− 2πi

Φ0
A)∆

∣∣∣
surface

= 0 satisfied at the pinning spheres

surfaces.
To gain some insight into the free energy expansion of

equation (2), we look at the contribution that an empty
pinning sphere brings to the free energy in case of no vor-
tices in the unit cell. A defect-free superconductor reaches
the maximum density everywhere, |∆|2 = 1, and its free
energy density is simply F0 = −0.5, according to equa-
tion (2). The superconductor with the two pinning centers
per unit cell has a higher energy because inside the pin-
ning centers the order parameter should vanish, |∆|2 = 0,
rendering its free energy density approximately equal to
the defect-free case removed of the volume of the two
spheres [18], thus equal to F0(1 − 8πR3/3L3). This re-
sult is only approximately valid since the curvature of the
order parameter near the pinning sphere surface causes an
increase in the kinetic energy, an effect that becomes more
pronounced for large spheres. The kinetic energy density,

Fkin =
∫

dv

V
τ ξ2

∣∣∣∣
(

∇ − 2πi

Φ0
A

)
∆

∣∣∣∣
2

, (3)

is more sensitive to the depinning transition [19] than the
total free energy density. The term ∇∆ picks a large
contribution when the vortex detaches from a pinning
sphere because the order parameter must bend at an extra
superconductor-insulator interface.

4 Results

The free energy density versus R is shown in Figure 3a
from 0◦ to 90◦, in steps of 9◦. To understand the growth
of the free energy with respect to R, firstly consider, the
θ = 0◦ curve, the lowest one in free energy. The vortex line
is pinned to the two aligned spheres along the z-axis. Con-
sidering the vortex core as a non-superconducting cylin-
der of radius ξ, it follows that for R ≤ ξ the two pin-
ning spheres are fully inside the vortex core, but not for
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Fig. 3. Dependency of the free energy, F , with the pinning center radius R and the angle θ. (a) Variation of F as a function
of the angle θ in the range 0◦ to 180◦, data points obtained for increments of 3◦. The radius R varies from 1.2ξ to 3.0ξ and for
each increment of 0.2ξ results in a distinct curve, all plotted in ascendant order as specified by the arrow. (b) Variation of F
as a function of the pinning center radius for a specific value of θ. The radius varies from 1.2ξ to 3.0ξ with a increment of 0.2ξ.
Distinct curve correspond to different θ, equal to 0◦, 9◦, 18◦, 27◦, 36◦, 45◦, 54◦, 63◦ and 72◦ in the ascendant order indicated
by the arrow.

R > ξ. This extra volume, of the insulating region out-
side the vortex core, grows with the size of the spheres
and, as previously discussed, makes the energy approach
zero, that is, the normal state, because there is less su-
perconducting volume in the unit cell. This behavior is
seen in Figure 3a for any angle and not only for 0◦. The
free energy density, as calculated by equation (2), versus
θ is shown in Figure 3b for several radii, ranging from
R = 1.2ξ to R = 3.0ξ, in steps of 0.2ξ. It shows symme-
try with respect to 90◦, as expected, since the two zigzag
paths, associated to θ and to 180◦− θ, are just mirror im-
ages of each other, and so, have the same energy. For all
radii, the configuration of minimum energy is for 0◦ and
the maximum for 90◦, because the 90◦ arrangement has a
smaller fraction of superconducting volume as compared
to the 0◦ configuration. For 0◦ the two spheres are aligned
along the z-axis and both pin the vortex line whereas for
90◦ only one sphere pins the vortex and the other one
is free in space, and so there is less condensate energy.
This makes the superconductor closer in energy to the
normal state, thus increasing its energy according to equa-
tion (2). At some intermediate angle between 0◦ and 90◦
occurs the depinning transition, although it is not notice-
able in both Figures 3a and 3b. The depinning transition
is not perceptible in F(θ), nor in its derivative with re-
spect to θ, because of numerical limitations, possibly due
to the coarseness of the mesh used in our calculations. In
summary Figures 3a and 3b provide different views of the
same data, which shows that the free energy density in-
creases with R, a property previously explained in terms
of the superposition of the vortex line with the pinning
spheres.

The depinning transition is revealed by the kinetic
energy of equation (3), though it steadily grows with θ,

reaching its maximum and minimum at the extremes 0◦
and 90◦, respectively.

The depinning transition is best seen in the deriva-
tive dFkin/dθ versus θ curve. Figures 4a and 4b show the
kinetic energy and its derivative for two selected radii,
namely R = 1.8ξ, and R = 2.4ξ. Both cases show that the
kinetic energy derivative vanishes for 0◦ and 90◦, within
numerical precision, which implies that the kinetic energy
derivative must have at least one maximum in between
these extreme angles [19]. Indeed these curves, as shown in
Figures 4a and 4b, display a double hump structure with
the lowest angle one as the absolute maximum. The depin-
ning transition corresponds to the critical angle which de-
fines the local minimum, located between the two humps.
The critical angle defined by this procedure is listed in
Table 1 for several radii. The reason for the second hump
relies on the superposition of the vortex core with the two
pinning centers. As long as it happens the order param-
eter has to adjust around one single common interface.
However above the depinning transition, the vortex un-
pins from one of the spheres, yielding two independent
surfaces where the deflection of the order parameter must
take place. This leads to an extra growth of the kinetic
energy above the transition because an order parameter
gradient is set around two surfaces instead of just one.

The most relevant results of this paper are summa-
rized in Figure 5, which shows the critical relative pinning
length, as computed from equation (1) for several pinning
sphere radii. The content of this figure is that of Table 1.
The usefulness of plotting ∆l/l(θc) instead of θc is to get
direct information about the relative increase of the vor-
tex line in presence of the zigzag arrangement of pinning
centers. For instance, for the selected radii, R = 1.8ξ and
R = 2.4ξ, Figure 5 directly gives that the vortex line can
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Fig. 4. The kinetic energy and its derivative. In (a) the curves
Fkin × θ for R = 1.8ξ and R = 2.4ξ. In (b) their derivatives.

Table 1. The critical angle θc is given here, defined by the
local minimum of the curves of Figures 4.

Radius (ξ) θc(degree)

1.2 33◦

1.4 42◦

1.6 48◦

1.8 54◦

2.0 60◦

2.2 66◦

2.4 72◦

2.6 75◦

2.8 78◦

3.0 81◦

stretch to a maximum of 31% and 46%, respectively, in
presence of this zigzag of pinning centers. The strongest
pinning corresponds to the maximum pinning sphere size,
which is R = 3.0ξ. In this case the depinning transition
occurs for θc = 81◦, and Figure 5 shows that this maxi-
mum vortex line stretch is 54%, thus below the maximum
limit of 61, 8% reached for 90◦, represented in Figure 5
through a dashed line.
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Fig. 5. Critical vortex line versus the radius of the pinning
sphere. The dashed line means the maximum relative pinning
length that is independent of the pinning center radius R.

The present results are best understood through Fig-
ures 6 and 7 which show semi-transparent views of the
vortex and of the pinning sphere surfaces [20].

Figures 6a and 7a show that for R > ξ the pinning
sphere volume is partially outside the vortex core. As
previously discussed this extra insulating volume costs
energy causing the free energy of the superconductor
to approach the normal state, which means to increase
with R, as shown in Figure 3a. Figures 6 and 7 show
three-dimensional plots of the normalized density |∆|2
for radii R = 1.8ξ and R = 2.4ξ, respectively, taken
at angles 0◦, 9◦, 18◦, 27◦, 36◦, 45◦, 54◦, 63◦, and 72◦.
Each tridimensional figure shows an iso-surface of con-
stant density inside the unit cell, taken here as a frac-
tion of the maximum value of the normalized density,
|∆|2iso = (|3∆|2max + |∆|2min)/4. It also shows the pinning
sphere surfaces and this provides a way to see in these
plots the length scales of 1.8ξ and 2.4ξ, respectively. No-
tice that above the depinning transition there is an iso-
surface sphere, |∆|2iso, inside the pinning spheres. The or-
der parameter does not drop abruptly to zero inside the
pinning spheres because the functions τi, taken in our cal-
culations, are smooth versions of the Heaviside function,
defined as τ = 1 outside the spheres and τ = 0 inside
them. Abrupt changes within a distance smaller than two
neighbor mesh points can lead to numerical instability,
and for this reason some degree of smoothness is necessary
because of our coarse-grain treatment of this problem. Fig-
ure 6 shows the behavior of the vortex line inside the unit
cell for several angular arrangements of the two pinning
spheres with R = 1.8ξ, ranging from Figure 6a until the
depinning transition in Figure 6g. Pinning of the vortex
by the top sphere becomes increasingly more difficult as θ
increases resulting that Figures 6h and 6i describe config-
urations above the depinning transition. Figure 7 shows
a similar sequence of angular arrangements with the de-
pinning transition corresponding to Figure 7i. For both
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(a) (b) (c)
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Fig. 6. Visualization of the order parameter density |∆|2 and of the pinning centers of radius R = 1.8ξ. Extreme density values
in the unit cell are |∆|2max = 0, 9990 and |∆|2min = 0, 0034. The density is visualized for |∆|2iso = 0, 2522. The figures from 6a
to 6i correspond to θ equal to 0◦, 9◦, 18◦, 27◦, 36◦, 45◦, 54◦, 63◦ and 72◦ degree, respectively.

radii, as well as for any other one, we find that the depin-
ning always occurs from the top sphere and never from
the bottom one. This apparent breaking of symmetry is a
consequence of the way the numerical procedure is carried
here. All the sub-figures of Figure 6 were independently
obtained from each other in our numerical simulations,
and the same is true for the sub-figures of Figure 7. Each

one of them results from an initial arbitrary configuration
of the order parameter that evolves as the temperature of
the Simulating Annealed method is lowered and the final
configuration is reached within some convergence criteria.
The reason for this breaking of symmetry is the way that
the order parameter configuration is updated during the
minimization procedure. The order parameter is updated
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Fig. 7. Visualization of the order parameter density |∆|2 and of the pinning centers of radius R = 2.4ξ. Extreme density values
in the unit cell are |∆|2max = 0, 9990 and |∆|2min = 0, 0035. The density is visualized for |∆|2iso = 0, 2507. The figures from 7a
to 7i correspond to θ equal to 0◦, 9◦, 18◦, 27◦, 36◦, 45◦, 54◦, 63◦ and 72◦ degree, respectively.

in sweeps of the mesh points of the unit cell that start
from the bottom and end in the top. For this reason the
vortex line remains pinned to the bottom sphere.

5 Conclusions

The length a vortex line inside a superconductor with pin-
ning centers in case of no thermal fluctuations, is not just

determined by the direction of the applied field and the ge-
ometry of the sample. The vortex line is subjected to the
two conflictual demands of pinning by as many defects
as possible, and its consequent increase in self-energy. We
have studied here this problem in the context of a sim-
ple model with just one kind of pinning center, insulating
spheres of coherence length size radius, forming a zigzag
near the vortex line. The zigzags are periodically arranged
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and form a lattice, which is simply described by a cubic
unit cell with two pinning centers inside, whose center of
the segment that connects them coincides with the cen-
ter of the cube. This segment is free to rotate around its
center producing for each angle a different zigzag path,
whose pinning centers interact with the vortex line that
pierces a pile of unit cell along the z-axis. The simplest
possible zigzag arrangement is the straight line of insu-
lating spheres of equal radii intercalated by two segments
that pins the vortex line along the z-axis. As the pinning
spheres inside the unit cell rotate a different zigzag of de-
fects is produced, resulting for each rotation a vortex line
more and more deviated from the straight line. The bal-
ance between the two competing effects, that is, defect
trapping and self energy, changes with angle to the point
that a depinning transition occurs and the vortex becomes
nearly straight again. This maximum stretch of the vor-
tex line depends on the pinning strength, here associated
to the radius of the pinning sphere. We have numerically
determined this depinning transition for a special pinning
center lattice, with density, 2/L3, L = 12.0ξ, and sev-
eral pinning strength, represented by radii, ranging from
R = 1.2ξ to R = 3.0ξ. We find that for this lattice the
maximum length increase of the vortex line is 54% bigger
than the straight line.

Research supported in part by Instituto do Milênio de Nano-
Ciências, CNPq, and FAPERJ (Brazil).
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